45 research outputs found

    Thermal Properties of the Binary-Filler Composites with Few-Layer Graphene and Copper Nanoparticles

    Full text link
    The thermal properties of an epoxy-based binary composites comprised of graphene and copper nanoparticles are reported. It is found that the "synergistic" filler effect, revealed as a strong enhancement of the thermal conductivity of composites with the size-dissimilar fillers, has a well-defined filler loading threshold. The thermal conductivity of composites with a moderate graphene concentration of ~15 wt% exhibits an abrupt increase as the loading of copper nanoparticles approaches ~40 wt%, followed by saturation. The effect is attributed to intercalation of spherical copper nanoparticles between the large graphene flakes, resulting in formation of the highly thermally conductive percolation network. In contrast, in composites with a high graphene concentration, ~40 wt%, the thermal conductivity increases linearly with addition of copper nanoparticles. The electrical percolation is observed at low graphene loading, less than 7 wt.%, owing to the large aspect ratio of graphene. At all concentrations of the fillers, below and above the electrical percolation threshold, the thermal transport is dominated by phonons. The obtained results shed light on the interaction between graphene fillers and copper nanoparticles in the composites and demonstrate potential of such hybrid epoxy composites for practical applications in thermal interface materials and adhesives.Comment: 25 pages, 4 figure
    corecore